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I ndividual organisms often produce
natural products in very small quantities
(1). Accordingly, their isolation and

identification traditionally require large
amounts of starting material and a signifi-
cant effort in sample preparation. Analytical
techniques such as mass spectrometry
(MS), capillary electrophoresis, and fluores-
cence spectroscopy are now extremely sen-
sitive and are being used to expedite this
process. The use of NMR on the other hand,
has lagged behind due to large sample
requirements. Although notoriously insensi-
tive, NMR is indispensable to natural
product identification because it provides
structural information that is not accessible
with other techniques. Microcoil (2–6) and
cryogenic (7) technology for NMR probes
has significantly reduced sample mass
requirements and enhanced several natural
product studies (3, 8–12). We recently com-
bined the advantages of small-diameter
samples with cryogenic technology in a
1-mm-diam NMR probe made from high-
temperature superconducting (HTS) mate-
rial to achieve �25� greater sensitivity than
a conventional probe (13). Here we have
used this novel probe to characterize the
defensive secretions of individual walking
stick insects.

Anisomorpha buprestoides (order Phas-
matodea) is common in the southeastern
U.S. and is often found in pairs with the
smaller male riding on the back of the
female (14). When threatened, it accurately

sprays a secretion at predators (14, 15). Fol-
lowing the extraction of �1000 A. bupres-
toides “milkings” into methylene chloride,
Eisner and Meinwald (15) identified its
active component as a cyclopentanoid
monoterpene dialdehyde that they named
anisomorphal. At about the same time,
Cavill and Hinterberger (16) identified a
similar compound in ants that they named
dolichodial. Anisomorphal had lower optical
activity than dolichodial, suggesting that
A. buprestoides secretions contained a
mixture of isomers or an optically active
impurity (15). Subsequently, two related ste-
reoisomers were identified from a plant in
the mint family, Teucrium marum (cat
thyme) (17–19). The minor isomer from
T. marum was assigned to anisomorphal
(17). For clarity, we will refer to any of the
stereoisomers with the covalent structure as
“dolichodial-like” (Scheme 1); we will
suggest specific assignments at the end of
this work.

Without purification or additional prepa-
ration, we were able to collect the 1D 1H
NMR spectrum (Figure 1, panel a) within
�10 min following the milking of a single
midsized A. buprestoides male. The spec-
trum was more complicated than expected
for a compound with only 10 carbon atoms,
so we extracted the sample with an equal
volume of deuterated chloroform (CDCl3)
and collected 1H NMR data on the respec-
tive aqueous (Figure 1, panel b) and organic
(Figure 1, panel c) fractions.
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ABSTRACT Because of analytical limitations, mul-
tiple animals or plants are typically required to identify
natural products. Using a unique 1-mm high-
temperature superconducting NMR probe, we directly
examined the chemical composition of defensive
secretions from walking stick insects. Individual milk-
ings were dissolved in D2O without purification and
examined by NMR within 10 min of secretion. We
found that Anisomorpha buprestoides secretes similar
quantities of glucose and mixtures of monoterpene
dialdehydes that are stereoisomers of dolichodial. Dif-
ferent individual animals produce different stereoiso-
meric mixtures, the ratio of which varies between indi-
vidual animals raised in the same container and fed
the same food. Another walking stick, Peruphasma
schultei, also secretes glucose and a single, unique
stereoisomer that we are naming “peruphasmal”.
These observations suggest a previously unrecog-
nized significance of aqueous components in walking
stick defensive sprays. Single-insect variability of
venom demonstrates the potential importance of
chemical biodiversity at the level of individual
animals.
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We confirmed that the aqueous fraction
contains essentially pure glucose by adding
0.9 �L of 50 mM D-glucose with 0.11 mM
3-(trimethylsilyl) propionate-2,2,3,3-d4

(TSP) in D2O to a similarly prepared sample.
Only the peaks corresponding to those in
the aqueous fraction increased in intensity
(Figure 1, panel e), no additional resonances
were detected, and the resonances ob-
served within the aqueous fraction were
identical with those of aqueous D-glucose
(Figure 1, panel f). HPLC/MS of aqueous
fractions supplemented with 13C6 D-glucose
also supports this conclusion (Supplemen-
tary Figure 1). Using HPLC and colorimetric
(20) assays, we estimate that an A. bupres-
toides secretion contains between 140 and

280 mM glucose. By NMR, we find roughly
equal amounts of glucose and dolichodial-
like isomers (Figure 1), but the exact ratio
varies between animals. We are unaware of
any previous reports of glucose in phasmid
insect secretions.

In order to assign the NMR resonances
(Supplementary Table 1), 2D datasets were
recorded from a single walking stick milking
(Figure 2). We were able to collect high-
quality COSY, TOCSY, ROESY, and natural
abundance 13C HMQC and HMBC datasets
in the time typically used for conventional
600 �L samples (Supplementary Figure 2).
From the 1D and 2D NMR data on A. bupres-
toides, we identified two major dolichodial-
like isomers with the corresponding diols
that are expected in aqueous solution

(Scheme 1). Each major isomer could be
fully assigned through 1H–1H and/or
1H–13C scalar coupling correlations. Diols
were recognized by the disappearance of
the formyl2 (Scheme 1) aldehyde proton in
water and were verified by extracting the
sample into CDCl3, which essentially elimi-
nates the diol. We estimate that in water the
diols are about 14% of the concentration of
the dialdehydes based on integration of
NMR peaks in the aldehyde and vinyl
regions. Using gas chromatography (GC)
with mass spectrometry detection (GC/MS)
we also identified two major isomers as well
as a minor isomer (Figure 3, panel c and
Supplementary Figure 3).

The isomeric heterogeneity of dolichodial-
like isomers led us to examine the composi-
tion of single milkings from different indi-
vidual A. buprestoides as a function of time.
We separated four half-grown males from
our culture into their own containers, col-
lected a sample from each, and analyzed
them by 1D 1H NMR. We similarly collected
and analyzed milkings from the same four
animals 2 and 8 d later. An expansion of the
vinyl region of the NMR spectrum of each
milking for each animal is shown (Figure 3).
The chemical shifts of the vinyl protons are
different for each isomer and thus provide a
direct indication of the heterogeneity of the
samples. To our surprise, different indi-
vidual A. buprestoides raised under identi-
cal conditions produce different mixtures
of dolichodial-like isomers. Furthermore,
the composition of the isomeric mixture
changed with time for some individuals.

Peruphasma schultei, a recently described
walking stick from Peru, also produces a
defensive secretion (21). We obtained a
pooled sample of three P. schultei milkings
and found by NMR that it also contains
glucose but only one dolichodial-like isomer
and corresponding diol; it was distinct from
either of the two major isomers found in A.
buprestoides based on a comparison of
NMR chemical shifts (Figure 2 and Figure 3)
and by GC (Figure 3, panel c).

To compare and name the different
dolichodial-like isomers identified in this
study, we performed GC/MS on chloroform
extracts of walking stick secretions and
T. marum, reported previously to produce
dolichodial and a small amount of aniso-
morphal (17). The two T. marum isomers are
consistent with the two major A. bupres-
toides isomers (Figure 3, panel c), and on
the basis of assignments of Pagnoni and co-
workers (17), we are assigning the A. bupre-
stoides isomers at 11.95 and 12.15 min to
“dolichodial” and “anisomorphal”, respec-
tively (Figure 3, panel c). These results are in
apparent disagreement with more recent
studies suggesting that A. buprestoides pro-

Scheme 1. Aqueous equilibrium between the
dialdehyde (right) and diol forms (left) of
dolichodial-like structures. Chiral carbons are
identified by asterisks. The numbering
scheme is according to Chemical Abstracts
Service.

Figure 1. One-dimensional 1H NMR spectra of
single A. buprestoides milkings. All spectra
were collected at 600 MHz using a 1-mm HTS
probe, and sample temperatures were 27 °C.
Each spectrum was collected with eight scans.
a) About 1 �L was collected from a single
insect on a glass pipet tip and added to 10 �L
of D2O containing 0.11 mM TSP. The sample
was loaded into a 1-mm capillary NMR tube
without purification, and the spectrum was
obtained within �10 min of the sample
collection. Sample a was extracted with 15 �L
of chloroform-d3, and the aqueous b) and
organic c) fractions were collected and
recorded. d) Expansion of a second sample
that includes the aqueous component and the
vinyl organic region of the spectrum. e)
0.9 �L of pure 50 mM D-glucose was added to
sample d. The region of the expansions in d–f
is indicated by a bracket in spectrum a. The
horizontal dashed lines in spectra d and e
indicate the constant vinyl peak intensities,
and the asterisks indicate peaks that
increased in intensity. f) NMR spectrum of
pure glucose.
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duces a single dolichodial-like isomer (22).
This could be due to improvement of analyti-
cal methods, genetic variability, or environ-
mental factors. The P. schultei and minor
A. buprestoides isomers at 11.78 min
(Figure 3, panel c) appear to be the same
and, we believe, are previously unreported.
We are naming this isomer “peruphasmal”.

Previous studies using MS, electrophore-
sis, or LC have reported individual variation
in polypeptide toxins from snakes (23–25),

cone snails (26), and a variety of arthropods
(27–30). To our knowledge, it has never
before been possible to perform a detailed
molecular study of a mixture of natural prod-
ucts from an individual insect using NMR.
This new capability provides the possibility
of elucidating chemical variation, such as
stereochemistry, in greater detail. Three
major findings on walking stick defense
secretions were enabled by high-sensitivity
NMR (13): (i) the heterogeneity of defensive
dolichodial-like stereoisomers that varies
between A. buprestoides individuals and
with time, (ii) a new dolichodial-like isomer
called peruphasmal from P. schultei, and
(iii) the identification of glucose in phasmid
secretions. The quantity of glucose suggests
a biological or chemical role in walking stick
venom that merits further investigation.

METHODS
Insect Rearing and Sample Preparation. Adult

A. buprestoides were collected at night in Gulf
Hammock, FL, during the fall of 2005. Eggs pro-
duced by the insects were hatched in captivity. The
young phasmids were fed a diet of only variegated
Ligustrum sinense purchased from a local plant
nursery. We were able to collect single milkings
from half-grown males consisting of �1 �L of a
whitish fluid by gently touching the secretory duct
with a glass pipet. To this we added 10 �L of D2O
containing 0.11 mM TSP as a chemical shift refer-
ence to the sample.

NMR. NMR experiments were done using a 600-
MHz 1-mm triple-resonance HTS cryogenic probe
that was developed through collaboration
between the University of Florida, the National
High Magnetic Field Laboratory (NHMFL), and
Bruker Biospin (13). The total sample volume is
�8 �L, and each sample was loaded into a 1-mm
� 100-mm capillary NMR tube (Norell, Inc.) using a
10-�L syringe with a fixed 110-mm � 30-gauge
blunt needle. The capillary tube was held in a stan-
dard 10-mm spinner using a Bruker MATCH device,
and the capillary–MATCH–spinner combination
was lowered vertically into the magnet on an air
column as usual. The sample temperature was
regulated at 27 °C. The spectrometer was a Bruker
Avance 600 with Xwin-NMR software, and all other
data acquisition was done using standard technol-
ogy. Two-dimensional datasets were processed
using NMRPipe (31) and manually assigned using
NMRView (32).

GC–Flame Ionization Detector. A Hewlett-
Packard (Palo Alto, CA) 5890 series II gas chro-
matograph and a flame ionization detector
(GC–FID) with nitrogen make-up gas (1.5 mL/min)
and helium carrier gas (1.3 mL/min) were used.
Cool on-column and splitless injections (1 �L)

were at 40 and 200 °C, respectively; the detector
was maintained at 260 °C. The oven program was
as follows: isothermal for 5 min, heating from 40
to 200 °C at 11 °C/min, isothermal for 10 min,
heating from 200 to 250 °C at 25 °C/min, and then
isothermal for 15 min. GlasSeal connectors
(Supleco) fused three silica columns in series: a
primary deactivated column (8 cm long, 0.53 mm
i.d.), an HP-1MS retention gap column (2 m long,
0.25 mm i.d., df � 0.25 �m), and a J&W DB-5 ana-
lytical column (30 m long, 0.25 mm i.d., df �
0.25 �m).

GC/MS. A Varian 3400 gas chromatograph and
a Finnigan MAT Magnum ion trap mass spectrom-
eter in electron impact ionization mode (70 eV)
with a filament bias of 11765mV or chemical ion-
ization mode (isobutane) were employed to
acquire full-scan spectra over the ranges m/z
40–400 at 0.85 s per scan. Holox (Charlotte, NC)
high-purity helium was used as a carrier gas
(1.4 mL/min). Injection and oven conditions were
as above. Transfer-line and manifold temperatures
were 240 and 220 °C, respectively.
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from P. schultei. The shoulder marked with an asterisk corresponds to one of the vinyl peaks of the diol, and the broad peak at 6.54 ppm is an
overlap of the diol and dialdehyde isomers (Scheme 1). c) GC analysis of chloroform extracts of A. buprestoides (red) and P. schultei (blue)
secretions, and T. marum (green). With both cool on-column (shown) and splitless injection, all isomers ionized with comparable efficieny (FID),
fragmented similarly (electron impact MS), and had identical masses of 166 Da (chemical ionization MS).
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